Mathematics made simple.

Followers

Generating Sexy Prime Pairs using Python


Sexy Primes, What are they?

They are prime numbers that differ by 6. For example, 5 & 11,  7 & 13. The name comes from the Latin word for six; sex. What we are going to do is, write a program to generate all the sexy prime pairs within a given interval of natural numbers. 

Sexy Prime Pairs

This is a program to generate all the sexy prime pairs below 10000.

Program

def check_prime(n):
    for i in range(2,n//2+1):
        if n%i == 0:
    return False
    return True

def primes_list(a,b):
    primes_list = []
    for i in range(a,b):
        if check_prime(i):
    primes_list.append(i)
    return (primes_list)

def sexy_list(primes_list):
    sexy_list = []
    for i in primes_list:
        for j in primes_list:
    if j-i == 6:
        sexy_list.append((i,j))
    return(sexy_list)

primes = primes_list(2,1000)
print(sexy_list(primes))

Output

[(5, 11), (7, 13), (11, 17), (13, 19), (17, 23), (23, 29), (31, 37), (37, 43), (41, 47), (47, 53), (53, 59), (61, 67), (67, 73), (73, 79), (83, 89), (97, 103), (101, 107), (103, 109), (107, 113), (131, 137), (151, 157), (157, 163), (167, 173), (173, 179), (191, 197), (193, 199), (223, 229), (227, 233), (233, 239), (251, 257), (257, 263), (263, 269), (271, 277), (277, 283), (307, 313), (311, 317), (331, 337), (347, 353), (353, 359), (367, 373), (373, 379), (383, 389), (433, 439), (443, 449), (457, 463), (461, 467), (503, 509), (541, 547), (557, 563), (563, 569), (571, 577), (587, 593), (593, 599), (601, 607), (607, 613), (613, 619), (641, 647), (647, 653), (653, 659), (677, 683), (727, 733), (733, 739), (751, 757), (821, 827), (823, 829), (853, 859), (857, 863), (877, 883), (881, 887), (941, 947), (947, 953), (971, 977), (977, 983), (991, 997)]

1 comment:

  1. No need to append to an array, just return false!

    ReplyDelete

Ultimate Theorem. Powered by Blogger.

About Me

My photo
Mathematics has always fascinated me. I love the subject since childhood. This love towards the field helped me in completing a Masters Degree in Mathematics. As much as I love the subject, I love teaching it too.

Local Linear Approximation

You might have seen the famous approximation $\sin(x) \approx x$ for $x$ near 0. We can use derivatives to approximate non-linear functions ...

Search This Blog

ultimate theorem